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ASYMPTOTIC DISTRIBUTION OF THE SHAPIRO-WILK W FOR TESTING FOR NORMALITY

By

J. R. Leslie, M. A. Stephens and S. Fotopoulos

1. Introduction.

A popular test for the normality of a random sample is based on the

Shapiro-Wilk statistic W. This -tatistic, which was presented in Shapiro

and Wilk (1965), is the ratio of the square of the BLUE of a to the

sample variance, where a 2 is the variance of the normal population from

which the sample is assumed, under the null hypothesis, to have been

drawn. For convenience we shall work with W1 /2 which has the form

n1 -1I- 1 1/2
W = X'V0 m/_(Xi-X)2m'VoiVolm)

where X = (X1,... ,Xn)', X 1 < X2 < ... < Xn, is the vector of order

statistics from the sample, X is the sample mean, and m is the mean

vector and V 0  the covariance matrix of standard normal order statistics.

As W 1 /2  is location and scale invariant we can assume from henceforth

that X1 ,... ,X , are order statistics for a sample from a N(O,1)

population.

A number of authors (for example, Sarkadi (1975), (1977) and Gregory

(1977)) have (correctly) guessed at the form of the asymptotic distribution

for W as well as predicting that the test should be consistent. However

-i
no rigorous proofs have been possible due to the presence of V0 1

-i
Neither V nor V0  can be found explicitly and until recently no

0 0
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reasonably accurate asymptotic approximation for V 0 was available. A

paper by one of the authors (Leslie 1984) has now remedied the situation;

in that paper can be found an approximation for V0  together with a number

of asymptotic properties of V09 one of which is of particular importance

to this work. It states that m is approximately an eigenvector of V0 1

in the following sense:

(-1 m- 2 m // C(logn) -1/2 ,

where C is a constant independent of n, and //b/ /2 = 7b2 for
- 1.

b = (bl,...,b n)'. This latter result formalises a similar one appearing

in Stephens (1975).

The asymptotic distribution of W, after appropriate normalizing,

has been assumed to be the same as that of the De Wet and Venter (1972)

statistic

W* = r2(X,H)

here r(X,Y) is the sample correlation coefficient between X and Y,

H is the nx 1 vector whose i
th  element is C 1(i/(n+l)} and - (1)

is the inverse function for the standard normal distirbution function

('), that is -l (x)) = x.

The rationale behind this assumption was that firstly, V.lI was

known to behave like 2m (see Stephens (1975)), secondly, t-1{i/(n+l)}

approximates the i th element of m and thirdly, as V0  is a doubly

stochastic matrix (the sum along any row or column is 1) we may write

2



W = r2 (X,V0
1m)

De Wet and Venter (1972) showed that the asymptotic distribution of

W has the form

*1/2 D

(2) 2n(l-W */2 - a -n

where = C (Y -1)/i, {Yi,i> 1} is a sequence of i.i.d. N(0,1)
3 i a

variates,

(3) a = (+l)1 { -1. } -2 3

an 2j(-j)('{4 (j))) 2
i=l

j = i/(n+l) and (') is the N(O,1) density function.

Beyond the De Wet and Venter result the first step towards the

asymptotic distribution for W was to show that the Shapiro-Francia

(1972) statistic Wt given by

r2 (Xm)'

behaves in the same way as W. This was done independently and via

different routes by Verrill and Johnson (1983) and by the authors in

Fotopoulos, Leslie, and Stephens (1984), henceforth called FLS, where

expression (2) was established with W in place of W*. In fact we

show in FLS the equivalent result that

(4) n(W * -W1 1 2 1/2 0 in probability.

3



Our task in the present paper is to show that

(5) n(W /2 _Wtl/ 2) 0 in probability

We note that Verrill and Johnson (1983) contains a result (Theorem 3)

which should eventually cover the asymptotic distribution of W. However

-1
certain properties of V0 m need to be established before it can be

applied. Inequality (1) does not appear to be enough.

2. Asymptotic Properties of W and a .

The following theorem presents one version of the asymptotic distri-

bution for W - in fact the asymptotic distribution for WI / 2 - whilst

the corollary offers the complementary form in terms of W.

Theorem. Under the hypothesis that the observed sample is from a normal

population the asymptotic distribution of the Shapiro-Wilk W takes the

form:

1/2 1/2 D
2n(l-W / ) _ 2En(-W ) -

where =3 (Y -l)/i, and {Y., i > 3} is a sequence of i.i.d.

N(0,1) variables.

From the lemma below and from the theorem we have Yn(l-W /2 ) - 0

in probability, which leads to

2n(l-W1/2) - n(l-W) = (/n(l-wl/2)) 2 _, 0 in probability.

Again applying the lemma below we obtain,

4



Corollary. An equivalent form for the asymptotic distribution of W is:

D
n(W-EW) -+ -.

It is not obvious from their definition just how the constants a willn

behave as n gets large. The following lemma should shed some light on

this matter.

Lemma. The constants a defined in (3) have the following properties:-- n

(i) a - 2nE{l-r(X,b)} - 0, where b can be any of m,n . ..

1/2V- 1rm or H,

(ii) a -nE(I-W) 0,
n1

(iii) a -n(l-n- m'm) + 3/21 < C(logn)-
n _

and

(iv) C1loglog(n) < an < C2loglog(n), 0<C 1 <C 2 < W

Note that (iii) implies that

mm = n - a - 3/2 + 0(l)

As far as we are aware this property of m'm has not appeared elsewhere;

the behavior of m'm is of interest in other contexts and has been the

subject of a number of papers (see for example, Balakrishnan (1984), Ruben

(1956) and Saw and Chow (1966)).
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It should be pointed out that the covergence for (i) and (ii) in the

lemma is extremely slow; for example a - 2En(l-r(X,m)) z -0.1 for 40 < n
n

< 400. It is therefore unclear as to which set of norming constants it is

best to use.

When Sarkadi (1975) established the consistency of the Shapiro-Francia

test, it seemed likely that the Shapiro-Wilk test would share that property.

That it is indeed consistent will follow from a straightforward application

of a result in Sarkadi (1981).

3. Proofs.

Notation. We give some notation which will be used throughout the rest

of the paper. With or without subscripts, C is a generic constant which

is independent of i and n. Set -1i2V0 Im, nG2 = ' 2 =m'm,

N is the integer part of l/2(n+l), S2 = En (X -X) 2/n,
n 1 i

(v) -{exp(-v)}, s. i -i =(s) W = -log(l(X i))-s Note
1 n 1 11 1

th
Wi+s i  is the i largest order statistic in a random sample from an

2 = =n -2exponential distribution; EW. = 0, EW =d where d. = L. ,11 in I
3E n-3i2 .th

EW 3 2E - and EWfr < C- for r > 3. Denote the i element1 1 1 _

of g,_m and H by respectively gi, m. and H.i (m and 1H are given

in section 1). Further, as r is scale and location invariant we assume

without loss of generality that our sample is from a N(0,1) population.

Proof of Consistency. The consistency of W follows directly from

Theorem 1 of Sarkadi (1981). There is a small difficulty in that whilst

appears to be the case that Volm is a vector whose elements, as you
it 0

move down the vector, are monotonic increasing, we are unbale to prove it.

6



This means we cannot establish that W1 / 2  is always positive. Sarkadi

exploits the fact that W 1 /2  is always positive to argue that tests based

+1/2 +
on are equivalent to those based on W . We need to argue likewise

1/2 tl/2
for W (note: we distinguish between W I , W etc. and the square roots

of W, W etc.; it is true that W = (W/) 2  but in view of what has just

been said, we are unable to say whether W I /2  is the positige square root

of W). We overcome this difficulty by showing below that

(6) W > -C(logn)-/2 , C independent of n.

From the theorem and the lemma, the lO0a% critical region for the test

1/2 1/2 -based on W is: W < -i/2(c(a)+a . For the test based on W

it is W < l-(c(ot)+an)n -. By (6) the two critical regions are asymptoti-

cally equivalent. We need only show therefore that W1/ 2  is consistent.

We extablish (6) by setting 1 to be an n> 1 vector of l's and writing

1I/2=
W 1/2= (X-Xl )'(-a-m) + X'm}/(nS G )

As X'm > 0 provided only that the components of X are increasing (see

Sarkadi (1975), Lemma 2), and from (1), maxlgi-miJ < C//(logn), we have,

with the help of (21) below,

W1/2> -CEnIXi/{nS G V(logn)} > -C//(logn)

- 1 1 n n-

We turn now to Theorem 1 of Sarkadi (1981). Applied to our context, it

states that W1 /2 will determine a consistent test of H 0: that the random

7



sample is normal, versus H1 : that the observations are not normal (Sarkadi

also allows the observations under H to be m-dependent with common

non-normal marginal) providing

(7n I(i-l < nu < i) -l(u)du = 1 + 0(l)
1 n

where I(A) is the indicator function for A. Note that Sarkadi's

theorem is framed in terms of a statistic T which here takes the form
n

n -- 1/2-1_ . 2 112
T = 7 {(X.-X)n S-c n 2(1-Wn - 1n in"

1

where c inVn = gi/Gn' To establish (7) we require results contained in

the proof of both our lemma and theorem, therefore we will leave the

derivation of (7) till the end of the article.

Proof of Lemma. We start by showing (iii); observe that

2 N
n(l-M ) = 2{ Var(X i)} - (2N-n)Var(XN)

1 1

We can write

2
Var(Xi) = E{4,(si+Wi) - E4(si+Wi)}

Expanding ' in W. up to third order terms, using the properties of1I
W i  given in the section on notation and together with results in Leslie

(1984) (in particular, Lemma 6 and the properties of ' given in section 3)

we can show that

8



Var(X)- 2 d ~~o~/) -2

-1 n -2
whiere 4'(s) f exp(-s.1( (exp(-s)) and d.i = Z. v This yields

N N
(8) 1Var(X) - )s)}d< < C(logn) 2

Using the Euler-Maclaurin summation formula (Knapp (1951), p. 534)

(9) 0 s. log((n+l)/i) - 1/2(i --(n+l) 1) < q{2 -(n+l)- 21/12

and

(10) 0 <d.i l-l(i/(+)) - -/2 -nl <l/(6i

In FLS we show that j!,(v)j and I ,"(v)! are monotonic decreasing in v;

also in Lemmas 1 and 4 in Leslie (1984) it is shown that

and

(12) i "i1og((n+1)/i)}W CIlog(n/i)}3-'

With (9), (10) and (11) we have

(13) K i'(s))1 (d n-i- 1{l-(i/(n+l))}))< i2 /log(n/i)

9



(14) {;(S)} - (Q '!log((n+l)/i)} 2M

where log{(n+l)/i} < a . < s..*

Expressions (1l)-(14) taken together imply that

N 2 -2 -1 -
(15 ~ {''(s )} din (n+l) 2 ~~(/n1)} ~-~~) }

< C(logn)-

From the definition of a and with (8) and (15) we obtain (iii).

Next we establish (iv). A well known inequality is useful here (see

Renyi (1970) p. 164; for x < 0

(16) ' ()(lx2 )/1x1 < (X) < /x

From this we obtain, for 1 < i < N, and with x =H.,

(17) 1-H. < i H J/(n+l) (H.) < 1

In view of the symmetry in the sumnmands in a n9 we need consider only'

1 < i < N. We use (17), over the range 1 < i < [-IN) and for

[.I-N] < i < N we use

(18) C1 < 4(H )(i/(n+l)){l-(i/(n+l))) < C-)

whre ', 2 donot depend on i or n. Based on (16) we show in Lemma 3

10



of FLS that for any c 0(0 <C 0 <1) there is a -Y(c 0  such that when

0)<u<Y(c) <

2 1/2 -1 2 1/2
(19) -{-log(2wu <)) (U) < -{-c 0log(2iu )

This yields for 1 < i < N,

(20) C 3 log(n/i)}
11  < JH < C 4 {log(n/i))l'

Applying (17), (18) and (20) we find

1 1

C ilog(n/i)) - < a+ 3/2 < 7  {ig/i) + C
5+ C6  a C 18

which, after approximating the sum by an integral, establishes (iv).

To complete the lemma we prove (i) and (ii). First however, we need

two results which will be used here and in the proof of the theorem:

(21) G 1~ as n- ~ and

(22) 0 < //I // R// - M'R MG // Z7//2

It is well known that M n~ 1 as n - (see Hoeffding (1953)). On

2=2 2 - 2-
writing G n M n+ 2rn'(t-rn)n + //-nln , from (1) and Schwarz

inequality we obtain (21). We demonstrate (22) by exploiting an idea

in Sarkadi (1972). First note that m'_& > 0, for mn'& = atV- I and V
0 0

being a covariance matrix, is positive definite. Set e to be the angle

11l



1i

between m and g then cos 6 > 0 and 0 < e < r. Consider the

triangle formed by vectors m, g and a r-g, respectively lines AB,

AC and CB. Let CD be the perpendicular from C to AB. Then

/a//2 > (CD2 //g// 2 sin2O //g// 2(l+cos2)(l~cose) > / 2(lcose) > 0.

As cose = m'g{//rm/ m /// }, (22) follows.

Returning to the proof of (i) and (ii) of the lemma we show first

that

(23) InE(l-r(X,b)) - n(l-M ) + 3/4 < C(logn)-

2
As r is scale invariant and as S is sufficient for the scale para-n

meter a we can use Theorem 7, p. 243 of Hogg and Craig (1970) to yield

nE r(X,b) = m'b/{ES //b//n
- I/2

.. . . n -

With nS2 distributed as x2 on n-I degrees of freedom it is elementary
n

to show that

ES n (2/n)1/2 '(n/2)/r((n-l)/2)n

By Stirling's formula this reduces to 1-(3/4)n - 1 + 0(n -2). As

n-1/2//b - 1 (the case b = H is shown in Lemma 2 of De Wet and

Venter (1972)), and using (1), (22) and an analogue of (22) with g and

Gn  replaced by H and H = /((H'H)Inl (this analogue holds because

miHi > 0 for all i, m. and H. always having the same sign) we have,
ii12

12



En{l-r(X,b)} n(ES n) 1l-03/4)n1 -n 1  m b//b// -1 + O(n 1

=n(ES n) -1(1-n ) -0(/4) + O(logn) -

=n(1-M n) -0(/4) + O(logn)-

the latter expression resulting from the fact that n(l-M n Q(loglogn)

(using (iii) and (iv) of the lemma and recall that M n-~ 1). This

establishes (23). Analogous to (23) for b =we have

2 21(24) InE{l-r (X,~) I n(l-M)n + 3/21 f C(logn)1

2
To show this we note that as nES = n-l we can write

n

nEr 2 (X,') EX'f) 2 /{(-l'c 
2 }

n

with

-W + IV'r
2 = ' 1 (1)2

R A + (n GM a )2-M +(a

I nM n +O(n/logn)
2 n n n n

using (1) and (22). Again using the property that n(l-M n O(loglogn),

we obtain (24). As

(25) 2n(l-M) n(l-M 2  - V'n(l-M )) 2 =O{(loglogn) 2/n

n n n

it is clear from (23), (24) and (iii) of the lemma that Wi and (ii) hold.

13



Undoubtedly it is true that a -E {l-r 2(X,b)} - 0, for b = m

and H. However this entails showing that / VoH-2H// 0 and

lVp2m/l - 0 both of which will follow once V0 is replaced by the

approximation V given in Leslie (1984): corollary 1 in Leslie (1984)

permitting this. These two results will involve a quantity of tedious

analysis and it seems unnecessary to set it down here.

Proof of Theorem. The theorem follows from (2), (4) and (5) together

with the lemma; therefore to prove the theorem it remains to establish

(5). Now

n
nS (W 1/2_W ) = Xi(g G -m nM )

1 i n i n

S (Xi-mi)(gi-mi)Gn + (Xi-mi)mi(G l-M ) + (m' - I// )Gn I

Sn n n n

As S n 1 a.s. and with (21) and (22), expression (5) will follow fromn

Markov's inequality once we demonstrate that

(26) ELZ(Xi-m i)(gi-mi)1- 0, and

(27) EII(Xi-mi )(G n-M n) 0

Result (26) follows from Schwarz inequality:

E jZ (X -m ) ( g - m i )  {n (l-M 2))} I/ 2  -m •

With (1) and with (iii) and (iv) of the lemma we have (26).

14



To deal with (27) we note that in Lemma 11 of FLS we show

(28) EX i- j < C/V'{ilog(n/i)}

and in Theorem 1 in FLS we show that

(29) {~-i <C- log(n/i)}-/

both of these bounds hold provided 1 < i < N. As !/,/i'/I-# gllj fi/m-g//

(30) G - MI < /r-//(M G Vn) f G(nlogn) -1/2

and

N
(31) EIZ(X -M.)m.i 2 1 EX-.ImI1.mImI

1 1 1 1 1 1

From (29), (9), (20) and the monotonicity (decreasing) of Ip v)

(32) In.! < C{log(n/i)}1 2  1 < i < N

so by combining results (28) to (32) we find

1 1 1 /2

This establishes (27) and hence the Theorem.

15



Derivation of Expression (7). Denote the integral in (7) by J(i,n) then

-¢{4-(1/n)}, for i = 1

J(i,n) = 1 ((i-l)/n)n-l + Ln-20 {D 1((i-e)/n)})_ , 0< e <1, 1< i<n

|{-1 (1-n-)} , for i = n.

Without loss of generality, assume n is even. Then

1n 2-

giJ(i,n)/G =2n 1  I gi(-l (i-1)/n}+ -1 F-l)-i n i=2 2

+ 2gn{4-1 (1/n)}

By (16), for 1 < i < n
=2

-- (i-1)/n} /n, 2 < i <kn, k <

2

C(k), kn < i <n 1

Thus by Schwarz inequality,

1 1
2n 1 kn--

in- 2  9 {((i-e)/n)}l < n 2 G {i¢-l(i/n)}- 2  -2n- 2

2 1 kn+l

which in turn is bounded by C{nlog(n)}-  
, in view of (19). Further, by

(16) and (19), (-l (1/n)) - ((logn)/n), by (1), gn I m and with (32)

and finally (22) we can argue that

16



1

-2n -i {  -1 n gi_ l{i/(n+l)l % ni m, M2n gi (i-)/n} 'i M nl
2 1

These ensure that (7) holds.
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---pTwenty years have elapsed since the Shapiro-Wilk statistic W for testing
the normality of a sample first appeared. In that time a number of statistics
which are close relatives of W have been found to have a common (known)
asymptotic distribution. It was assumed therefore that W must have that
asymptotic distribution. 4k- show this to be the case and examine the norming
constants that are used with all thle statistics. In addition the consistency
of the W-test is established. --
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